
Reprinted from ICMC 2000 - 1 - Copyright  IBM Corporation 2000

A Framework for Representing and
Manipulating Tonal Music

Steven Abrams, Robert Fuhrer, Daniel V. Oppenheim, Don P. Pazel, James Wright
{abrams, rfuhrer, music, pazel, jwright @watson.ibm.com }

Computer Music Center
IBM T. J. Watson Research Center

P.O. Box 218, Yorktown Heights, NY 10598

Abstract
This paper describes a novel set of tools, collectively known as “Smart Harmony”, that allows the composer to control
and manipulate music at a high level, while constraining the music to conform to a designated functional tonal
framework. The Smart Harmony system permits two essential types of operations. First, it allows musical material to be
taken from one context and used in a new context – that is, with a new key and/or chord progression – and automatically
transforms the material to sound appropriate in that context. Second, it enables musical material to be reshaped, pulling
notes higher or lower in pitch, while constraining the material to sound appropriate within a given harmony. An
important benefit of our mechanism derives from its relaxation of a strict interpretation of harmonic function, by which
means we gain the flexibility to perform these manipulations. We describe data structures and algorithms to implement
this mechanism, and offer motivation steeped in traditional functional harmony for its behavior. Lastly, we present
musical examples.

1. INTRODUCTION
The goal of our research in music composition systems is
to better support the composer’s creative workflow. In
order to more fully understand composers’ creative needs,
we have engaged in extensive dialogs with many
composers from different backgrounds. We have
concluded from these dialogs that most systems fail to
provide adequate mechanisms to: (1) capture a composer’s
musical ideas quickly in a variety of forms, (2) manipulate
them in musically sensible and interesting ways, and (3)
organize those ideas in meaningful ways.

More specifically, composers have expressed their need to
quickly explore musical territory by reusing and reshaping
musical materials within a tonal context. To that end, we
have found a useful set of pitch-related musical
manipulations that is not supported by current tools. This
paper discusses one such family of musically interesting
manipulations that are aimed at addressing this need, as
embodied in our “Smart Harmony” system.

The Smart Harmony conceptual framework was first
designed by Oppenheim and prototyped in DMIX
(Oppenheim: 1996), loosely based on a representation of
Pachet (1993]) with the addition of functional elements of
tonality. The current Smart Harmony implementation,
described here, utilizes new data structures and algorithms
that build on what we learned from the DMIX prototype.
It is a central aspect of our Music Sketcher technology
preview (Abrams et. al.:1999), which can be freely
downloaded from http://www.research.ibm.com/music.

Smart Harmony embodies a novel representation of
functional harmony that models the functional role of
pitches within the context of a tonal framework that
consists of a harmonic progression and a tonal scale.

The Smart Harmony system supports two basic
manipulations:

1) Changing the chord progression associated with
musical material, and automatically altering each
pitch so that it retains aspects of its harmonic function
in the new context.

2) Shifting musical pitches higher or lower, preserving
aspects of their harmonic function.

Because these transformations preserve certain aspects of
the harmonic function of the individual notes, the overall
result is that the altered pitches sound “appropriate”.

These two operations offer a variety of useful and
musically sensible possibilities, including:
• changing the shape of a musical line of pitches by

means of a time-varying curve, maintaining aspects of
harmonic function

• reusing musical material from one section or piece of
music in another context, adapting it to conform to
the new context

Preservation of harmonic function is a fundamentally
unique aspect of Smart Harmony. In order to support this,
a pitch’s function in a particular context is explicitly
indicated in its representation. Although our current
representation does not capture harmonic function in its
entirety, it enables the specific transformations mentioned
above and provides room for future growth as well.

In fact, there is a tension between preserving the harmonic
function, register, and basic melodic shape of musical
materials as they are transformed, and allowing the
composer flexibility to change chord progressions, shift
materials in register, and re-shape melodies. Smart

Reprinted from ICMC 2000 - 2 - Copyright  IBM Corporation 2000

Harmony attempts to strike a balance among these
difficult constraints by preserving certain aspects of
harmonic function while giving the composer some
flexibility to explore the musical territory.

The remainder of this paper discusses the design and
implementation of the Smart Harmony system, as
embodied in the Music Sketcher technology preview. It
begins with a discussion of harmonic function,
emphasizing those aspects of harmonic function that are
preserved by our transformations. Next, it relates the
transformations of Smart Harmony to traditional
functional harmony. It goes on to discuss the
representation of pitches and chords, as well as the
algorithms for performing the basic manipulations.
Practical examples are given for each of these
transformations. Finally, we present an agenda for
enhancing the Smart Harmony system in a number of
interesting directions.

2. PRESERVING HARMONIC FUNCTION
The crux of the problem is: How can we perform the
musical transformations described above in such a way
that the music retains its basic character and still sounds
appropriate? The difficult questions are defining what we
mean by “retains its basic character” and what makes it
“sound appropriate?” Let us examine this by starting with
a very simple transformation.

If the only difference between the source and target
harmonies is the tonic of the key, then a simple chromatic
transposition will clearly preserve the harmonic function
of all pitches in the sample. For example, if the original
harmony is the simple I-IV-V-I chord progression in C
major, and the target harmony is the same progression in F
major, a transposition by a perfect fourth will meet the
constraint.

However, what if the target harmony is a completely
different progression in a different key? If a simple
chromatic or diatonic transposition is used, pitches that are
harmonious in the original harmony may now be
inharmonious in the target and vice-versa. In other words,
the result would likely not sound appropriate.

The Smart Harmony system attempts to solve this
problem by modeling the relationship between each pitch
and the underlying chord and scale in context, and then
using that relationship to determine what pitch to use
when a note is placed into a new context. It is this
relationship – primarily, whether or not the pitch is a
(possibly altered) chord-tone or not and, if not, whether it
is a diatonic scale-tone or not – that the smart harmony
system preserves.

To satisfy this, we represent the number of scale-steps a
pitch is from the root of the chord, along with its alteration
(if it is a chromatically altered note). We refer to this as
the pitch’s modal-degree. This is distinct from its scale-
degree, i.e. the number of scale-steps from the tonic of the
scale, which is not explicitly represented in our system
(but can trivially and automatically be derived knowing

the key and root of the chord). Representing the modal
degree makes it easy to retain the relationship between a
pitch and the local harmony, as embodied by the chord.
When a note is moved to a new harmonic context, its
modal degree will be used in conjunction with the new
chord/scale combination to find the appropriate pitch.

For certain chord changes, this is not sufficient, as there
are modal degrees that are chord-tones in some chords,
but not in others. For example, the F in a Csus4 chord is
modal degree 4, and a chord-tone. If this note were
moved to a C major chord, modal degree 4 would now be
a non-chord tone. Clearly, this would not be appropriate,
as a previously harmonious tone is now inharmonious.

To solve this problem, we allow notes to have one modal-
degree, but function as another. That is, the F in the
Csus4 example really functions as the third in that chord.1
Therefore, we additionally represent the functional modal
degree of a pitch for chord-tones (for non chord-tones, the
functional modal degree is not utilized). The F in the
Csus4 has functional modal degree 3, and, when moved to
a C major triad, would become an E. Representing both
the modal and functional modal degrees allows what we
term the “preservation of harmonic function.”

As mentioned earlier, Smart Harmony supports more than
just a chord-change operation – it also gives the composer
the ability to raise or lower pitches by a specified amount,
while preserving the harmonic function. We call this a
“pitch-shift.”

To allow pitch-shifting while retaining the basic character
of the music, we found it necessary to relax the constraint
that preserves the precise relationship between a note and
its underlying chord and scale. To solve this, we created
the notion of “functional compatibility,” which allows a
note (as determined by its modal degree and alteration) to
be shifted to any other similarly altered but compatible
modal degree. The pitch-shift operation first transposes a
note by a given amount of semitones, and then “snaps” it
to the nearest pitch having a compatible harmonic
function with that of the original note in its original
context.

In the current incarnation of Smart Harmony, two pitches
are considered compatible if they are both chord-tones, or
both non chord-tones, and are similarly altered. In other
words, using the C major chord example, C, E, and G are
all compatible with one another, and D, F, A, and B, are
likewise compatible with one another. To illustrate the
behavior of alterations, note that Db, Fb, Ab, and Bb are
all compatible with one another, as are D#, F#, and A#
and B#. 2

1 Currently, the functional modal degree of each chord pitch is
defined in the chord object, thereby avoiding any ambiguity.
2 Note that B# is compatible with altered non-chord tones,
despite being enharmonically equivalent to C, a chord-tone.
Smart Harmony views names as being indicative of the intended
function and therefore treats B# as a raised non-chord tone. It

Reprinted from ICMC 2000 - 3 - Copyright  IBM Corporation 2000

By following the chord-change operation with a specially
computed pitch-shift operation, Smart Harmony produces
pitches that are not only functionally compatible with their
original counterparts, but are also as close as possible to
the original pitch. This is accomplished by computing the
semitone distance from the original pitch to the result of
the chord-change, and pitch-shifting by this amount in the
opposite direction of the move. This does not result in the
precise original pitch, but rather a nearby compatible
pitch. We call this the “preservation of register.”

Although “functional compatibility” dilutes the proper
notion of harmonic function, without it, the shift operation
would be impossible. This is part of the trade-off between
a rigid adherence to the rules of functional harmony and
the flexibility afforded by our transformations.
Nevertheless, the definition of functional compatibility
used in Smart Harmony preserves certain important
aspects of harmonic function – at least the harmonicity (or
lack thereof) of the notes are preserved, for example. The
following section provides more details on the relationship
between our notions of preserving function and functional
compatibility and traditional functional harmony.

Functional Harmony and Smart Harmony
To summarize, we have outlined techniques for
preserving harmonic function and register, and defined a
notion of functional compatibility. We have shown how
these ideas combine to form constraints on a set of
musical transformations – changes of chord and pitch
shifts. In the following, we examine these constraints and
transformations from the perspective of traditional
functional harmony. We begin by relating this discussion
to the roots of the tonal system: stable and dynamic tones.
(In the following discussion we adopt the terminology of
(Sadai:1980); similar notions are found in numerous
sources.

According to functional harmony, scale degrees 1, 3, and
5 are perceived as being stable, whereas degrees 2, 4, 6,
and 7 are perceived as dynamic. The latter form a tonal
tension that is resolved by moving to the nearest stable
tone. Degrees 2 and 4 can resolve by a step up or down
(down is considered the more stable resolution giving a
greater sensation of finality).

The relationship between stable and dynamic tones is
perhaps the central idea of tonal music. Melodies in the
tonal system are built from a small set of fixed melodic
patterns that either extend or connect neighboring stable
tones through prolongation and elaboration (Sadai (1980)
mentions six such patterns, see p. 8, and example pp. 18-
19; Schenker (1969) demonstrates their application on the
macro structure). The rules of traditional voice leading,
counterpoint, and harmony all take great care to properly
resolve the dynamic tones. Sensations of tension and
relaxation, as well as expectation and surprise, may be

would be simple to address this issue with small changes to our
current algorithm.

controlled through careful consideration of these
relationships. These sensations have been associated with
emotion and meaning in music (Mayer 1969), and are also
important in delineating musical phrases and structure. In
short, there is little doubt of the importance of the role of
stable and dynamic tones – as determined by their scale-
degrees – in functional harmony.

The Smart Harmony system, however, deals with modal
degrees, not scale-degrees. Moreover, the functional
compatibility computation preserves the roles of chord-
tones and non chord-tones, not the stability referred to in
traditional harmony texts. What, then, is the relationship
between stable and dynamic tones in traditional harmony
and Smart Harmony’s notions of preserving harmonic
function and functional compatibility?

In order to support transformations with the desired
flexibility, we chose to consider each chord in the
underlying harmony as governing a local region, creating
locally stable and dynamic tones based on their function in
the chord. This borrows from the notion of tonal areas, in
which a scale degree becomes a temporary tonic. Our
model considers that something similar is happening at the
micro-level during each chord – a notion that is widely
recognized in jazz theory, for example (Levine:1995). In
effect, this representation allows the flexibility of
changing chord-progressions – even changing the
harmonic rhythm – while preserving a sense of the local
stability and dynamism of each note, relative to the local
chord. The important question of global stability and
dynamism is left to the composer in his choice of a
harmonic progression.

When considering melodic patterns in terms of locally
stable and dynamic tones, Smart Harmony’s retention of
functional compatibility will ensure that every melodic
pattern in a source phrase will map onto some melodic
pattern in the result. This is a necessary first step, but in
many cases, there is room for improvement. The new
patterns should also be functionally correct, i.e. unstable
tones should function correctly in relation with each other
and with the stable tones that delineate each new pattern.

Not surprisingly, this implies that the ideal Smart
Harmony system should consider proper voice-leading
and resolution of dynamic tones. The degree to which this
is important in practice depends a great deal on the
musical context in which the transformation is made. For
example, one can expect that an inner voice within a rich
texture, a melody line that is the listener’s focus, and a
bass line will each require different treatment.

Another benefit of preserving stability with respect to the
local chord rather than the underlying scale is evident
when the system is used outside of the domain of classical
music. In many later forms of music – jazz, to be sure,
but late romantic music or Debussy as well – the dynamic
tones of the scale are utilized for added color and
therefore need no resolution. 9th, 11th, and 13th chords are
the norm rather than the exception – even in a final
cadence. Modeling these pitches as chord-tones in a more

Reprinted from ICMC 2000 - 4 - Copyright  IBM Corporation 2000

complex chord, rather than as non chord-tones in a simple
triad or 7th chord, better models their true function. This
also allows the composer to control the degree and nature
of added harmonic color by changing the chord-
progression, and Smart Harmony will automatically utilize
– or drop – the upper partials of more complicated chords.

3. IMPLEMENTATION
Given the notions of modal-degree and functional modal-
degree defined above, we can now proceed to explain the
exact representations of pitch and harmony used for in
Smart Harmony. Underlying Smart Harmony is a set of
basic musical objects, implemented in C++, such as
named pitches, intervals, and the like, along with
appropriate computations; these will not be discussed, for
the sake of brevity. The focus will be on the objects
unique to the Smart Harmony system.

Representations of Harmonic Objects
There are two basic objects represented in Smart Harmony
– a harmonic pitch, and a harmonic context. The harmonic
pitch combines a MIDI note number with a description of
its harmonic function (i.e. whether or not the pitch is a
chord-tone, a scale-tone, or a chromatic or diatonic
alteration of a specified sort from the underlying chord or
scale). The harmonic pitch is shown in figure 1:
struct HarmonicPitch
{

int originalMIDIPitch;
int modalDegree;
int functionalModalDegree;
int alteration;

};

Figure 1: Harmonic Pitch data structure

As discussed above, the modal degree represents the
number of scale-steps from the root of the current chord,
and the alteration is a signed integer representing semitone
alteration from that pitch (+1 for sharp, -1 for flat). They
combine to represent the interval from the root of the
chord.

The functionalModalDegree field is only (and always)
utilized for chord-tones; for non chord-tones, it is zero. It
is used to represent pitches that are actually at one modal
degree, but function as a different modal degree, such as
the 4 in a sus4 chord, in the earlier example.

The originalMIDIPitch field represents the actual MIDI
pitch of the note as it existed in its original harmonic
context. It is not relevant for most operations, as it has no
functional significance. It does, however, provide a
reference point for operations that attempt to minimize the
change in pitch that results from the harmonic
manipulations, as will be discussed below.

The modal degree, functional modal degree, and alteration
fields only partially specify a pitch. Ultimately, to be
rendered, the pitch requires a harmonic context.

A harmonic context consists of chord and tonality objects.
The Chord Object indicates the scale-degree of the chord

root (i.e. its Chord Degree), and the Chord Type. A Chord
Type consists of the list of Chord Pitches in the chord,
each represented as its interval from the chord root and a
description of its harmonic function. The Tonality
indicates the key and scale, represented by a {tonic,
modality} pair. The tonic is either a MIDI pitch or a
named pitch, and the modality is a representation of the
intervals in the underlying scale. The entire structure of a
harmonic context is shown in figure 2.

The representation of the Chord Pitches is certainly
noteworthy. It consists of three numbers: The semitone
distance from the root of the chord, its modal degree, and
its functional modal degree. As described above, this
allows, for example, the fourth in a sus4 chord to be
indicated as functionally equivalent to a third.

Looking at figure 2, we see that a Csus4 in the key of F is
represented as a V sus4 in F major. The sus4 itself shows
the three notes of the chord – the root, the fourth, and the
fifth. The root of the chord is (trivially) zero semitones
distant from the root of the chord, and is both actually and
functionally the first modal degree. It is therefore
represented as {0, 1, 1}. The fourth is five semitones
from the root, has modal degree 4, but, being a sus4,
functions as a third. Hence, this pitch is represented as {5,
4, 3}. The fifth is represented as {7, 5, 5}.

C sus4
(V sus4 in F maj)

F MajorV sus4

Chord Degree
V

Chord Pitches
{0, 1, 1}
{5, 4, 3}
{7, 5, 5}

Chord Type
sus4

Chord Object

Tonic
F

Modality
Major

Tonality

Harmonic Context

Figure 2: Harmonic Context

Rendering and Transformation Algorithms
The chord representation does not directly yield the
pitches in the chord, as named pitches or as MIDI pitches.
However, these are easily computed from the Chord
Pitches, Chord Degree, and Tonality shown in figure 2.

The computation of a harmonic pitch from a MIDI pitch is
more interesting. This computation is central to Smart
Harmony, because it turns basic MIDI data plus a standard
harmonic analysis into harmonic pitches, amenable to
further manipulation by Smart Harmony.

This computation can be ambiguous for chromatically
altered notes. Since the harmonic pitch contains both
modal-degree and semitone fields, there are times that the
system needs to guess which of two enharmonic
representations should be used for a note. For example, if
a G# (MIDI pitch 68) is played over a C major triad, the
system can interpret this as a raised fifth or a lowered
sixth. In the current implementation, this decision is made

Reprinted from ICMC 2000 - 5 - Copyright  IBM Corporation 2000

by the underlying Tonality. That allows the G# to be
interpreted one way in when the C Major is a I in C
Major, and a second way when it is a IV in F Major.

Computing a harmonic pitch from a MIDI pitch is shown
in figure 9. First, we explicitly check that the exact pitch
is not actually in the chord. This is necessary in cases
where the chord contains chromatically altered pitches
with respect to the underlying scale, where an incorrect
enharmonic choice might result in misclassifying chord-
tone as a non-chord tone.

Next, we compute the scale-degree of the pitch (handling
enharmonics as described above). Then, we compute the
modal-degree as the distance from the chord-degree to the
scale-degree. If any notes of the chord have the computed
modal-degree, then the pitch is a chord-tone, with a
functional modal degree obtained from that of the
appropriate note of the chord. Finally, the appropriate
alterations are computed.

Another central algorithm of Smart Harmony is the
computation of a MIDI pitch from a harmonic pitch in a
given harmonic context, shown in figure 7. This operation
is invoked whenever a harmonic pitch is moved to a new
harmonic context as part of the chord-change
transformation. The idea is simple: start from the tonic of
the scale, move up by the appropriate number of semi-
tones to the chord root, and then by the appropriate
number of semitones from the chord root to the correct
pitch in the chord. Certain details (mostly related to
keeping the pitch in the desired octave) are glossed over in
the pseudo-code, but the basic algorithm should be clear.

As we mentioned earlier, one of the operations supported
is a pitch-shift operation, whereby a pitch is moved higher
or lower by an approximate amount, retaining its
harmonic function. This is implemented by the addition
of a pitch shift to the computation of a MIDI pitch from a
harmonic pitch. The system uses slightly different
strategies for chord-tones than for non-chord tones, but
both rely on the notion of functional equivalence.
Pseudo-code for this algorithm is shown in figure 8.

First, the MIDIPitchFromHarmonicPitch routine
is used to compute a starting point. Then, a target MIDI
pitch is computed by raising this pitch exactly the desired
amount of semitones. Then, the closest compatible pitch
is found. Essentially, all compatible pitches within the
octave are computed, and the closest one is selected.
When the harmonic pitch being shifted is a chord-tone,
each chord-tone is computed (considering any alterations
on the input harmonic pitch), and the closest one to the
target pitch is chosen. Likewise, for non chord-tones,
each similarly altered non chord-tone is computed, and the
closest one is chosen. This implementation supports the
definition of functional compatibility offered earlier.

4. EXAMPLES
Figure 3 presents an example of applying several Smart
Harmony transformations in Music Sketcher to the first
four bars of the melody of Mozart’s Piano Sonata in C

Major. To import the melody into Music Sketcher, it was
manually annotated with its chord progression. The
progression was then used to automatically derive the
sequence of harmonic pitch objects as described in
Section 3.

Figure 3: Transformations of Mozart Piano Sonata

The original melody appears in the top staff (transposed
down an octave for clarity), and the harmonic progression
is given above it. The next staff shows the same melody,
shifted in register by four semitones. The third staff
demonstrates a time varying shift in register using a linear
ramp curve ending one octave higher. The final staff
demonstrates the change of the underlying harmony, in
this case a move to the key of C minor with a modulation
taking place in bar 2 into the key of E flat major (the new
progression is indicated above the stave). The numbers 1-
6 placed above some staves identify key regions that are
referenced in the following text.

Several observations are apparent in the comparison of the
shifted melody in staff 2 to the original. Overall, the shift
is successful in that the result sounds appropriate. The
basic pattern of a skip between stable tone degrees in bar 1
is correctly shifted up in register. Note in region 1 that the
pattern E-G in the melody (a third) was correctly
transformed into the notes G-C (a fourth). This
transformation cannot be accomplished through
transposition alone, and illustrates Smart Harmony’s
unique ability.

Region 2 in measure 2 demonstrates a more subtle point.
The two sixteenth notes in the melody serve to prolong
the C, by embellishing it with the D. The first C in the
melody is not a chord tone, whereas the D is (it is the 5th

modal degree of the V7 chord). The shift operation
mapped this to E and G, where one would expect E and F.
The reason for this is that both target notes for the second
sixteenth note, F and G, are chord tones. Thus, with a shift
of 4, our algorithm selected G, as it was closer to the
transposed value. (Note however that the F would have
been selected had we chosen a shift of 3 semitones).

Region 3 in measure 3 demonstrates how melodic shape
can be affected by the shift in register. In this case, the
downward movement from A to G in the melody is
replaced by a repeated C note.

The shift result in region 4 may be considered appropriate,
if the melody is embedded between other voices, or

Reprinted from ICMC 2000 - 6 - Copyright  IBM Corporation 2000

problematic, if the melody is the focus of the listener’s
attention. The first G in measure 4 of the melody creates a
formational pattern with the preceding C in bar 3, where
both notes are chord tones. However, in the shifted
melody, the leap from E to B is problematic. The choice
of jumping to chord tone B, while preserving the melodic
shape, is troublesome from a functional point of view. As
B is the leading tone, it would almost certainly be resolved
within the style of this work by an upward step motion to
C. Instead, it is resolved downwards to G. In this case, the
most appropriate choice for shifting the G would be to the
high D, which would alter the melodic shape but conform
to the tonal system. The only other possible alternative
would be to jump down to G, which would indeed
conform to the tonal system, but would have an odd effect
on the shape and flow of the melody.

It is interesting to note that the corresponding notes in the
ramped-up melody (region 5) provide a very musical
solution. Even though the melodic skip of a fourth down
in the melody (C-G) is replaced with stepwise motion (G-
F), the tonal resolution is perfect, whereby the 7th of the
G7 chord, F, resolves in a stepwise motion to E, then D,
and finally to C. The corresponding location in the
modulated melody (region 6) is somewhere in between.
There is an uncharacteristic jump from C to A flat, the 7th

of the dominant B7 chord, which should resolve to G.
However the G here is skipped altogether. A musician in
this case would most likely alter the melodic direction,
having the notes of this last measure be: A flat, F, G
(rather than E flat), F and E flat.

Figure 4: Piano Comp Example

In Figure 4, we modify a simple “comping riff” by first
applying a new harmonic progression, and then applying a
pitch shift (ramping upwards for 6 beats, then downward
for two beats, peaking at the G7 chord with a 1 octave
displacement). Note that the new progression defines a
different harmonic rhythm: a pattern of 4-2-2 beats,
compared to the original’s 4-3-1. Also note that the
original riff is intended to lead into the subsequent
fragment (the last two sixteenth notes are non-chord
tones), a feature that is properly preserved by the Smart
Harmony mechanism.

Figure 3 illustrates the theoretical aspects of several Smart
Harmony transformations, using an exemplar of 18th

century music. Figure 4 shows how Smart Harmony has
achieved our goal of enabling composers to quickly
reshape musical materials in sensible and musically
interesting ways, using a fragment of contemporary music.

5. FUTURE WORK
The Smart Harmony system provides a balance between
theoretical correctness and composer flexibility – but it is
by no means complete. It can still be improved on both of
these counts, and this section presents our current ideas
for improvements and extensions.

As implemented in Music Sketcher, all chord change
operations (that do not utilize pitch-shifts) preserve both
the register and harmonic function of the notes (through
functional compatibility). However, this is not always
desirable. There are times when relaxing the preservation
of register would be more appropriate. In a bass line, for
example, preserving register comes at the cost of changing
the chord inversion, sometimes creating quite undesirable
effects. At times, we have added pitch-shift modifiers
specifically to undo the effects of register-preservation.
This option should be exposed to the composer.

The harmony system itself should be made aware of chord
inversions. The modal-degree computations will need to
be rethought when inversions are permitted, but this
should provide a musically sensible mechanism for the
composer to control how the transformations operate.

Figure 5: shifting a prolongation-pattern up in the scale

As noted, in shifting a melody in register one should
maintain not only the function of each note but also the
correct relationship between the stable and dynamic
degrees, i.e. the melodic pattern. Consider the fragment in
Figure 5, a melody in C major. Measure 1 consists of two
connecting patterns: stable C to E; stable E to C. The
dynamic tone, D, resolves first upwards and then
downwards. Measure 2 demonstrates the next possible
shift (a shift by a second is not possible: the distance
between C and the next stable tone, E, is a third). Measure
2 is very similar to 1, and can be also obtained by diatonic
transposition. However, the next possible shift in measure
3 demonstrates an important problem. Here, the stable
tones, G and C, have two intervening dynamic tones: A
and B, the 6th and 7th scale degrees. When shifting up as
per measure 3, should the dynamic note F map to A or to
B? Measure 3 has the musically correct answer: when the
connective pattern ascends from G to C, one expects the
leading tone to lead into C; when descending, one expects
the 6th scale degree to resolve to 5. Measures 4 and 5 show
solutions in which B and A (respectively) are selected:
both are clearly less satisfactory. The selection of the
correct note can only be done when considering the larger
context of the enclosing melodic pattern, something that
Smart Harmony does not yet handle.

Reprinted from ICMC 2000 - 7 - Copyright  IBM Corporation 2000

In fact, this is just one instance of a more general problem:
Smart Harmony does not examine melodic patterns. It
works strictly “vertically” i.e. looking at a note only in its
harmonic context, but not in its melodic context. The
addition of a post-transformational “horizontal” analysis
and correction should help Smart Harmony handle correct
voice leading, ensure the correct resolution of dynamic
tones, dealing with anticipation, embellishments, and
correctly handle degrees 6 and 7 in both major and minor.

6. CONCLUSION
The Smart Harmony system discussed here provides an
exceptional level of flexibility to the composer. The
system allows rapid coarse-level changes such as the

reshaping of material and combining musical materials
from different contexts. This lets the composer quickly
explore new musical territory, combining musical raw
material in new ways. This is a significant step toward
our goal of amplifying the composer’s musical creativity.

However, the system is not yet complete. We have
outlined a number of areas ripe for future exploration:
voice-leading, proper representation of embellishments,
appropriate handling of the minor key, and a more flexible
mechanism for interpreting enharmonics, to name a few.
We intend to continue to develop these ideas while
remaining focused on our ultimate goal: utilizing
technology to enhance composers’ ability to be creative.

APPENDIX: PSEUDO-CODE
HarmonicContext::MIDIPitchFromChordPitch(cPitch)
{

root = myTonality.SemiTonesFromTonic(myChordDegree);
return myTonicMIDIPitch + root + cPitch.semiTones;

}

Figure 6: Computing the pitches of a Chord

HarmonicContext::MIDIPitchFromHarmonicPitch(hPitch, octave)
{
 if (hPitch.functionalModalDegree != 0) // hPitch IS a chord tone
 {
 s1= myTonality.SemiTonesFromTonic(myChordDegree);
 if (myChord.HasNoteWithModalDegree(hPitch.modalDegree))
 s2= myChord.semiTonesToDegree(hPitch.modalDegree);
 else
 s2= myChord.semiTonesToDegree(hPitch.functionalModalDegree);
 s2 += hPitch.alteration;
 }
 else // hPitch IS NOT a chord Tone
 {

steps = myChordDegree.scaleDegree + hPitch.modalDegree -1;
if (steps > 7)

steps -= 7; // Beware of possible octave wrapping
alteration = myChordDegree.alteration + hPitch.alteration;
s1 = myTonality.SemiTonesFromTonic(ScaleDegree(steps, alteration));
s2 = 0;

 }
 return myTonicMIDIPitch + s1 + s2 + 12*octave;
}

Figure 7: Rendering a MIDI pitch from a Harmonic Pitch

HarmonicContext::MIDIPitchFromHarmonicPitchWithShift(hPitch, octave, semiTones)
{
 inMidiPitch=MIDIPitchFromHarmonicPitch(hPitch, octave);
 targetMidiPitch = inMidiPitch + semiTones; // The precisely transposed pitch.
 if (hPitch.functionalModalDegree != 0) // We have a chord tone here...
 {
 // For each chord-tone, compute an altered version of it, Remember the closest one.
 For Each Chordal Pitch cPitch in myChord
 {
 // Construct testPitch: alteration from hPitch, modalDegree from cPitch.
 testPitch.modalDegree = cPitch.modalDegree;
 testPitch.functionalModalDegree = cPitch.functionalModalDegree;
 testPitch.alteration = hPitch.alteration;
 testMIDIPitch = MIDIPitchFromHarmonicPitch(testPitch, octave);
 if testMIDIPitch closest to targetMIDIPitch, then outMIDIPitch = testMIDIPitch
 }
 }
 else // Not a chord-tone; take a different tactic.
 {
 // For each non chord-tone, compute a midiPitch and remember the closest one.
 For each modalDegree mDeg not present in myChord
 {

Reprinted from ICMC 2000 - 8 - Copyright  IBM Corporation 2000

 testPitch.modalDegree = mDeg;
 testPitch.functionalModalDegree = 0;
 testPitch.alteration = hPitch.alteration;

 testMIDIPitch = MIDIPitchFromHarmonicPitch(testPitch, targetMidiPitch/12);
 if testMIDIPitch closest to targetMIDIPitch, then outMIDIPitch = testMIDIPitch
 }
 outMidiPitch = closestMidiPitch;
 }
 return outMIDIPitch;
}

Figure 8: Rendering a MIDI Pitch with Shift

HarmonicContext::HarmonicPitchFromMIDIPitch(midiPitch)
{

for each chord pitch cPitch in myChord
{
 if (MIDIPitchFromChordPitch(cPitch) == midiPitch)

return HarmonicPitch(midiPitch,
 cPitch.modalDegree, cPitch.functionalModalDegree, 0);

}
// myTonality is responsible for resolving which enharmonic name to use for midipitch
inScaleDegree = myTonality.ScaleDegreeFromMIDIPitch(midiPitch);
// Build theHarmonicPitch to return it.
theHarmonicPitch->midiPitch = midiPitch;
theHarmonicPitch->modalDegree = (myScaleDegree.scaleDegree - myChordDegree.scaleDegree);
theHarmonicPitch->functionalModalDegree = 0;
// Find the ChordPitch, if any, that has the computed modalDegree
for each ChordPitch cPitch in myChord
{

// Handle equivalence of, eg, 2nd and 9th in comparison
if (cPitch.modalDegree == theHarmonicPitch->modalDegree ||
 cPitch.modalDegree == theHarmonicPitch->modalDegree +7)
{

theHarmonicPitch->modalDegree = cPitch.modalDegree;
theHarmonicPitch->functionalModalDegree = cPitch.functionalModalDegree;
break;

}
}
if (theHarmonicPitch->functionalModalDegree != 0)

theHarmonicPitch->alteration = distance(midiPitch, MIDIPitchFromChordPitch(cPitch);
else

theHarmonicPitch->alteration = myScaleDegree.alteration - myChordDegree.alteration;
return theHarmonicPitch;

}

Figure 9: Rendering a MIDI Pitch with Shift

REFERENCES
Abrams, S., Oppenheim, D., Pazel, D., Wright, J., et. al. (1999).

“Higher-Level Composition Control in Music Sketcher:
Modifiers and Smart Harmony.” Proceedings of the
ICMC, Beijing, China.

Levine, M, (1995). The Jazz Theory Book. Petaluma, CA:
Scher Music Co.

Meyer, L., (1961) Emotion and Meaning in Music. University
of Chicago Press.

Oppenheim, D. (1992). “Compositional Tools for Adding
Expression to Music.” Proceedings of the ICMC, San
Jose, California.

Oppenheim, D. (1996). “DMIX—A Multi Faceted Environment
for Composing and Performing Computer.” Computers
and Mathematics with Applications, 32(1): 117-135.

Pachet, F. (1993). “An Object-Oriented Representation of
Pitch-Classes, Intervals, Scales and Chord: The basic
MusES.” (revised and extended version), LAFORIA,
Internal Report 93/38, November 1993.

Pazel, D., Abrams, S., Fuhrer, R., Oppenheim, D., Wright, J.
(2000). “A Distributed Interactive Music Application
using Harmonic Constraint.” Proceedings of the ICMC,
Berlin, Germany.

Ratner, Leonard G. (1985) Classic Music : Expression, Form
and Style. Wadsworth Pub Co.

Sadai, Y. (1980) Harmony in its Systemic and
Phnomenological Aspects. Jerusalem, Israel: Yanetz Press.

Schenker, H., (1969) "Five Graphic Music Analyses” Dover
Publications, Inc.

Wright, J., Oppenheim, D., Jameson, D., Pazel D., Fuhrer R.
(1997). “CyberBand: A ‘Hands-On’ Music Composition
Program.” Proceedings of the ICMC, Thessaloniki,
Greece.

	A Framework for Representing and �Manipulating Tonal Music
	1. INTRODUCTION
	2. PRESERVING HARMONIC FUNCTION
	Functional Harmony and Smart Harmony

	3. IMPLEMENTATION
	Representations of Harmonic Objects
	Rendering and Transformation Algorithms

	4. EXAMPLES
	5. FUTURE WORK
	6. CONCLUSION
	APPENDIX: PSEUDO-CODE
	REFERENCES

