Higher-level Composition Control in Music Sketcher

- Modifiers

and Smart Harmony

Steven Abrams, Daniel V. Oppenheim, Don Pazel, James Wright

{ a@brams, music, pazel, jwright @watson.ibm.com }

Computer Music Center
T. J. Watson Research Center, IBM
P.O. Box 218, Y orktown Heights, NY 10598
www.research.ibm.com/music

There is a fundamental tension between working with high-level abstractions which often provide intuitive
conceptual manipulations but hide details, and working with low-level data which, while quite powerful, can
also be quite tedious. To help balance this tension, we have been developing technologies and higher-level
abstractions designed to enhance the composer’s ability to create music, focusing on the compositional concepts
of shape, structure, and tension-release. This paper discusses our ongoing efforts in this area, as demonstrated in
the Music Sketcher program, with particular focus on the Smart Harmony and Modifier technologies.

1. Introduction

The typical user interface in many commercial music
applications models machinery in a recording studio, such
as a multi-track recorder and mixer. This model has little
to do with the process of creating music that has been
evolving for over a millennium by Western composers.
Computer languages for composing music that are more
commonly developed in academic environments share a
similar problem. In these languages the conceptual model
is often a combination of some structural aspects of music
as modeled by a musical score, with a focus on tools and
processes that are often borrowed from computer science.
Here the connection to traditional compositional processis
tenuous, too.

At IBM Research’'s Computer Music Center
(http://www.research.ibm.com/music) we are engaged in a
series of projects that revolve around music, art and
creativity, with a goal of helping people to amplify their
natural musical creativity. In particular we are beginning
to investigate some of the concepts used by composers in
their creative process, starting with structure, shape, and
tension-release. We feel that by focusing on concepts,
rather than on machinery that happens to be available, we
will be able to develop user interfaces, tools, and
technologies that are more meaningful to composers. This
paper will focus on three novel mechanisms that we
developed for dealing with these initial concepts: blocks,
modifiers, and Smart Harmony. “Blocks’ is our initial
attempt at a technique for manipulating a composition’s
structural aspects. “Modifiers’ allow reshaping aspects of
the music at different structural levels, ranging from subtle
expressive nuances to dgnificant reworking of
compositional materials [see Oppenheim 92, 96, Wright
et. a. 97]. “Smart Harmony” models aspects of tonality —
amechanism used in Western music to create sensations of
tenson and release — and supports the creation of
harmonic frameworks in a composition. These are al

Reprinted from ICMC 1999

implemented in our Music Sketcher application, available
at http://www.research.ibm.com/music.

Music Sketcher is a vehicle we are developing for
experimenting, generating ideas, and exploring the power
of our new music technologies. It draws on our
experience from DMIX [Oppenheim 96] and builds upon
our previous work with the CyberBand program [Wright,
Oppenheim et a 1997]. Music Sketcher isunique in that it
combines a model of tonal music with a system of high-
level modifiers that supports a variety of sophisticated
manipulations, all working together to maintain a desired
musical context. Music is represented using a three-level
content hierarchy (see Figure 2): a single ScoreSheet
contains a set of ScoreParts, each containing one or more
ScoreBlocks. The ScoreSheet represents the entire
composition in a fairly conventional manner: time
proceeds from left to right, and concurrent Parts are
stacked vertically. A ScoreBlock (or Block) contains an
ordered set of notes and other events, often corresponding
to amusical phrase, motif or “riff” (a Riff Block) or even a
chord sequence (a Harmony Block). A Block could also
contain entire sections or nested compositions. the
underlying representation supports hierarchies of arbitrary
depth (Music Sketcher does not currently use this

capability).

A paralel modifier hierarchy mirrors the multi-level
content hierarchy and provides an intuitive mechanism for
creating musical transformations. Smart Harmony worksin
tandem with pitch modifiers and ensures that pitches will
always maintain their correct harmonic function. This
opens the door to many new kinds of musica
transformations we feel are useful. For example, any riff
can be placed in any harmonic context and adapt to it
while maintaining its essential melodic and rhythmic
characteristics. In addition, any melodic line can be
reshaped while ensuring that the new pitches always
function correctly within the given harmonic context. The
remainder of this paper will discuss Modifiers and Smart
Harmony in more detail

Copyright 00 IBM Corporation 1999

2. Modifiers

Modifiers are real time transformation algorithms that
change aspects of musical events such as pitch, dynamics,
onset and duration. They can operate at any hierarchical
level of the music representation, and may be used to
make both subtle and radical changesto amusical entity or
set of entities. For example, a pitch modifier might be
used to reshape a melodic line (see Figure 2 and staffs 2
and 3 in Figure 3). A duration modifier can be applied to a
violin part, ensuring that all musical fragments placed in
that part are rendered staccato or legato in varying
degrees, according to a particular articulation pattern (see
staff 4 in Figure 3). Modifiers may be combined to create
a single complex effect. For example, the articulation and
phrasing of a particular motif can be completely reshaped
by combining onset, velocity and duration modifiers.

The multi-level content hierarchy is mirrored by a parallel
modifier hierarchy. Maodifiers attached to a content
element at a given level affect both that content element
and any lower-level content elements nested within the
parent element. The explicit, multi-level representation of
content modifications has at least four major benefits: (1)
A desired musical result can be easily described. (2)
Modifiers are late-bound (effects occur during playback).
Thus, modifiers themselves can be altered directly and
dynamically, both during playback (e.g. for performance
purposes) and as part of editing the actual composition.
(3) Modifiers can be inherited simply by placing a content
element in a given location within the dual content-
modifier hierarchy. All modifiersfor a given location (e.g.
bars 5-9 in the Lead Part) are applied automatically to any
block(s) placed in that location. (4) It is easy to
understand and manage interdependencies between
different modifiers, both within a given level and across
multiple levels.

In Music Sketcher, Modifiers are currently modeled as
graphical curves which change some aspect of the music
over time. By default, the length of a modifier curve
stretches as needed to fit the duration of the associated
block or score portion of the score sheet. However, you
can also create cyclical effects, by setting the modifier to
repeat for a specific duration (see both Modifiersin Figure
2).

Within Music Sketcher, using a modifier is fairly
straightforward (see Figure 2): (1) Select the aspect of
music you want to affect (e.g. pitch, duration, velocity,
onset); (2) draw a curve that describes the desired change
over time; (3) set the vertical range of the shape (e.g. will
a pitch curve span an interval of a third, or five octaves);
(4) select a combination algorithm to control how the
graphical curve is applied to the current value(s) of the
musical events being processed. When several modifiers
are applied to the same musical aspect (such as pitch), you
can specify the order in which each modifier is applied.
Individual modifiers may also be toggled on and off.

As previoudly noted, when pitch modifiers are used in
conjunction with Smart Harmony then new and useful

Reprinted from ICMC 1999

musical transformations are made possible. Rather than
merely a diatonic or chromatic transposition, pitches can
be manipulated in various ways while maintaining
conformity with the underlying harmonic context.

3. Smart Har mony

Smart harmony provides a means for transforming the
pitches of a block, making them conform to a given
specification of harmony. Techniques used in Smart
Harmony were based on work from DMIX [Oppenheim,
‘96] that elaborated a representation of Pachet [Pachet,
‘93]. Harmony is specified by a (tonic, modality, chord-
root, chord-type) tuple, called a harmonic context. These
are arranged in Harmony Blocks that are placed in the
Harmony Part, which provides the harmonic framework
for the composition. Smart Harmony supports two types of
transformations: chord-changes and pitch-shifts.

When a riff is played against a harmony part, the chord-
change transformation occurs. Smart harmony alters the
pitches to work musically in the designated harmony while
retaining the riff’s essential character — even if the new
harmony isradically different the riff’s original harmony.

This process is not a simple key transformation. Each
pitch in the riff contains a description of its harmonic
function, indicating the pitch’s role within its original
chord and key. Examples include whether or not it is a
chord pitch, a passing scale tone, a chromatically altered
scale-tone, etc. When a pitch is rendered against a given
harmonic context, smart harmony finds a pitch near the
original pitch that has a compatible function in the new
harmonic context. The preservation of harmonic function
is non-linear, and is especially noticeable in chord
changes, wherein different pitches are shifted by different
amounts. The end result is a riff sounding much like the
original but noticeably in the new harmony.

The pitch-shift provides for pitches to be moved higher or
lower by a specified chromatic interval. However, instead
of precision adjustments to the interval, the pitches are
transformed to pitches, “close by” in the interval, which
preserve their harmonic function. This transformation
when applied in conjunction with pitch modifiers provides
a melodic reshaping capability that retains harmonic
conformance. Asused in the MusicSketcher interface, one
can literally, draw a new pitch line for a melody and
expect a reasonable audio rendering of the melody closely
adapted to that line, but with a preserved harmony.

4. Harmony Builder

The harmony builder isavisua tool in MusicSketcher that
is used to compose sequences of harmonic contexts, or
progressions (the Harmony Blocks), which are inserted in
a MusicSketcher ScoreSheet's harmony track. The
harmony builder is invoked directly from MusicSketcher
and interacts with the ScoreSheet, allowing blocks to be
transferred to and from the ScoreSheet’ s harmony track

Copyright 00 IBM Corporation 1999

Harmony Builder

Name:

I\maiur—\Vmaiur—Vma\m—\ma\nl[EMa\nl] ‘ H

[~Modal Chord Selection [~Maming Sty

& Numeral " Comman

Key

I~ Automatically Name Progression

[Pick-&-Chor

Ch Key
{l_:i.' [= {lﬁ

R L

Key: C Major

Figure 1: Harmony Builder

One uses the harmony builder in the following manner.
After selecting a key, a user selects chords from one of
several visuals and inserts them into a progression
assembly region (shown at the bottom of Error!
Reference source not found.). The user places these
chords in succession into the progression and adjusts the
onset and duration of each in beats. When finished, the
progression is simply dragged from the assembly area and
dropped onto the harmony track at an appropriate position.

Central to the harmony builder is a chord navigation
visual, which assists the user in building chord
progressions that make sense. Concentric regions, each
partitioned into sectors provide a guide map for chord
succession. For example, starting at the cord in the center,
the next successor chords lie in the next outer concentric
region. Lighter colored sectors indicate “more likely”
successors than sectors colored darker. Continuing,
successors to these are found in the outer concentric
region similarly. From there, the diagram may be re-
centered to a different chord, and the process proceeds.
The current chord succession rules are based on [Piston
‘87] and are limited to diatonic triads. We are developing
a more flexible mechanism for dynamically making
alternative harmonic rule bases available.

The harmony builder also assists in modulating to related
keys. Right-clicking on a chord in the assembly area
brings up a list of aternative representations of that chord
in other keys, allowing that chord to be used as a pivot for
modulating to a new key.

The harmony builder also includes a pick-a-chord feature
allowing selection of non-diatonic chords, including 7",
9™ 11" and 13" chords with augmented or diminished
notes and built on arbitrary scale degree. Chords specified
in this manner may also be dropped into the assembly
area.

5. Conclusion

Although it is not yet a complete compositional tool,
Music Sketcher demonstrates the novelty and utility of
these technologies. We intend to continue developing
these technologies, adding to the functionality and the
usability, as we better understand how higher-level

Reprinted from ICMC 1999

operations and abstractions can truly assist in the creative
process.

6. References

Oppenheim, D. (1992). “Compositional Tools for Adding
Expression to Music.” Proceedings of the ICMC, San
Jose, Cdlifornia.

Oppenheim, D. (1996). “DMIX—A Multi Faceted
Environment for Composing and Performing
Computer.” Computers and Mathematics with
Applications, 32:1, pp. 117-135, 1996.

Oppenheim, D., Wright, J. (1996). “ Towards a Framework
for Handling Musical Expression.” Proceedings of the
ICMC, Hong Kong.

Pachet, F. (1993). “An Object-Oriented Representation of
Pitch-Classes, Intervals, Scales and Chord: The basic
MuskES’ (revised and extended version), LAFORIA,
Internal Report 93/38, November 1993.

Piston, W. (1989). “Harmony”, WW Norton & Co.

Sadai, Y. (1980) “Harmony in its Systemic and
Phnomenological Aspects.” Yanetz Press. Jerusalem,
Israel.

Wright, J., Oppenheim, D. (1997). “CyberBand: A
‘Hands-On’ Music ~ Composition Program”
Proceedings of the ICMC, Thessaloniki.

Copyright 00 IBM Corporation 1999

!EHusic Sketcher Technology Preview - [Scoresheet Yiew: D:ADan\Conferencesil . [lj[=] E3

File Edit Toolz “iew Modfierz Window Help

Yolume I J_ TE"“PDI J |‘|2EI iIIBPM Elﬂm
L L

bd ozart

I Cyclic Sine +- 1 octave

Soore

Fart

v R

[Stick to last selectior MIDI Pitch | | | | Uelocit_l,ll Durationl

| b odifier E ditar or: "'l egato-staccato’ values. B i
File Modifier Preferences

vn|Beat 15.04 [Value: 0,60

Figure 2: The Music Sketcher application

The Mozart Riff is stretched over four bars in the top part. The Harmony track contains the harmonic progression I-1V-V-
I, created with the Harmony Builder in Figure 1. The Modifier view displays the “Cyclic Sine +- 1 octave” that applies a
sine shape to the pitches of the Mozart riff every two bars. An additional Modifier “Legato Staccato” is applied to

duration.
4
f [—— —f—— f— T |
41—+t ; |
g 12—+ }]
@ 4— o 1 & — & } & ; ; |
- - - -
4 e ry [e r 1 [1
| T he o | | [r— T——] e | [p— p——]
T — . g+ ——t v = = g +——1 ——1
L | a that ——a—— —F——F— e s ————F— —F——7—
LT v - -+ <+ - & - " - - - - &

L
L

Figure 3: Music as processed by Modifiersin Music Sketcher

1. Staff 1. theoriginal Mozart riff, repeating two times.

2. Staff 2: the Mozart Riff stretched over four bars. A cyclic pitch modifier is applied repeating its shape every two bars.
The range of the resulting transposition is one octave in each direction. Smart Harmony is disabled.

3. Staff 3: the same, but now Smart Harmony is applied. Note that pitches are conformed to the underlying harmonic
progression (I-1V-V-1). Since al notes in the Mozart riff are chord tones, pitches are shifted to the appropriate chord
tones of the underlying progression.

4. Staff 4: the same, but here the cyclic Modifier “Legato Staccato” is applied to duration, affecting each bar.

Reprinted from ICMC 1999 -4 - Copyright 00 IBM Corporation 1999

	Introduction
	Modifiers
	Smart Harmony
	Harmony Builder
	Conclusion
	References

